电推进的比冲比化学推进的比冲高很多 由于电推进比化学推进的比冲大得多,所以它所需的推进剂将会少的多,从而增加卫星的有效载荷,提高卫星性能和效益。但是电推进也有它的缺点,比如它仅能应用于小推力系统。
离子发动机的推力仍旧比不上传统的火箭发动机那么高,不适合做火箭的第一级发动机,很难将有效载荷从地球带到近地轨道。但比冲量方面的优势则很明显,到了近地轨道,离子发动机的优势才能显现。
就目前情况而言,等离子发动机的推力仍旧比不上传统火箭,很难将有效载荷从地球带到近地轨道。
一位来自NASA的华裔航天员张福林,提出了一种新型火箭——等离子体火箭。这种火箭靠电能推动,以气态的等离子体为“燃料”。坐上等离子体火箭,从地球到火星只需要39天。
在快接近火星时降低比冲,增大推力,进行减速。客船首先环绕地球飞行30天,获得逃逸速度,随后用85天飞往火星,最大比冲为32000s。
冲出地球后抵达火星,发动机要产生足够的比冲,比冲的上限由燃料决定。 探索 后从火星返回地球,出发时就带上返程的燃料,增加了火箭的负荷,明显不太现实。因此需要在宇宙中补充燃料,让火箭能够返回地球。
离子发动机原理:等离子发动机的能量来自电力,可以来自太阳能电池板,或者核电池,通过从发动机尾部喷射出阳离子来推动飞船前进,所以离子发动机的驱动方式也被叫做电力驱动方式。
离子发动机,也就是通常所说的“电火箭”,其原理也并不复杂,推进剂被电离成粒子,在电磁场中加速,高速喷出。
其工作原理是:火箭发动机先电离氩气,将其转化为低温等离子体(其实也有5000 以上)。随后利用磁铁使电离气体加热、加速,温度达到上百万摄氏度。
也称作等离子发动机,是下一代最具潜力的航天发动机之一,其原理是把气体电离,然后在强电场的作用下把离子高速喷出,瞬间温度可达100万度,效率是常规化学推进器的数十倍,理论上可以把航天器加速到100公里每秒的速度以上。
靠反作用力前进。飞船向后喷射气体,气体就会给飞船一个向前的反作用力,即推力,飞船就会前进。达到一定速度后,关闭发动机,飞船依靠惯性飞行,因为宇宙中几乎没有引力,飞船便会持续不断地前进。
如根据吸气式发动机工作原理的不同,吸气式发动机又分为活塞式发动机、燃气涡轮发动机、冲压喷气式发动机和脉动喷气式发动机等。